202 research outputs found

    Existential questions in (relatively) hyperbolic groups {\it and} Finding relative hyperbolic structures

    Full text link
    This arXived paper has two independant parts, that are improved and corrected versions of different parts of a single paper once named "On equations in relatively hyperbolic groups". The first part is entitled "Existential questions in (relatively) hyperbolic groups". We study there the existential theory of torsion free hyperbolic and relatively hyperbolic groups, in particular those with virtually abelian parabolic subgroups. We show that the satisfiability of systems of equations and inequations is decidable in these groups. In the second part, called "Finding relative hyperbolic structures", we provide a general algorithm that recognizes the class of groups that are hyperbolic relative to abelian subgroups.Comment: Two independant parts 23p + 9p, revised. To appear separately in Israel J. Math, and Bull. London Math. Soc. respectivel

    Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions

    Full text link
    What is the common link, if there is any, between Church-Rosser systems, prefix codes with bounded synchronization delay, and local Rees extensions? The first obvious answer is that each of these notions relates to topics of interest for WORDS: Church-Rosser systems are certain rewriting systems over words, codes are given by sets of words which form a basis of a free submonoid in the free monoid of all words (over a given alphabet) and local Rees extensions provide structural insight into regular languages over words. So, it seems to be a legitimate title for an extended abstract presented at the conference WORDS 2017. However, this work is more ambitious, it outlines some less obvious but much more interesting link between these topics. This link is based on a structure theory of finite monoids with varieties of groups and the concept of local divisors playing a prominent role. Parts of this work appeared in a similar form in conference proceedings where proofs and further material can be found.Comment: Extended abstract of an invited talk given at WORDS 201

    Solutions of twisted word equations, EDT0L languages, and context-free groups

    Get PDF
    © Volker Diekert and Murray Elder; 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Grammars and Other Rewriting Systems, F.4.3 Formal Languages. We prove that the full solution set of a twisted word equation with regular constraints is an EDT0L language. It follows that the set of solutions to equations with rational constraints in a contextfree group (= finitely generated virtually free group) in reduced normal forms is EDT0L. We can also decide whether or not the solution set is finite, which was an open problem. Moreover, this can all be done in PSPACE. Our results generalize the work by Lohrey and Sénizergues (ICALP 2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to complexity and with respect to expressive power. Both papers show that satisfiability is decidable, but neither gave any concrete complexity bound. Our results concern all solutions, and give, in some sense, the "optimal" formal language characterization

    Equations over free inverse monoids with idempotent variables

    Full text link
    We introduce the notion of idempotent variables for studying equations in inverse monoids. It is proved that it is decidable in singly exponential time (DEXPTIME) whether a system of equations in idempotent variables over a free inverse monoid has a solution. The result is proved by a direct reduction to solve language equations with one-sided concatenation and a known complexity result by Baader and Narendran: Unification of concept terms in description logics, 2001. We also show that the problem becomes DEXPTIME hard , as soon as the quotient group of the free inverse monoid has rank at least two. Decidability for systems of typed equations over a free inverse monoid with one irreducible variable and at least one unbalanced equation is proved with the same complexity for the upper bound. Our results improve known complexity bounds by Deis, Meakin, and Senizergues: Equations in free inverse monoids, 2007. Our results also apply to larger families of equations where no decidability has been previously known.Comment: 28 pages. The conference version of this paper appeared in the proceedings of 10th International Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17, 2015. Springer LNCS 9139, pp. 173-188 (2015

    Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions

    Full text link
    The aim of this paper is to design the polynomial construction of a finite recognizer for hairpin completions of regular languages. This is achieved by considering completions as new expression operators and by applying derivation techniques to the associated extended expressions called hairpin expressions. More precisely, we extend partial derivation of regular expressions to two-sided partial derivation of hairpin expressions and we show how to deduce a recognizer for a hairpin expression from its two-sided derived term automaton, providing an alternative proof of the fact that hairpin completions of regular languages are linear context-free.Comment: 28 page

    Solutions to twisted word equations and equations in virtually free groups

    Full text link
    It is well known that the problem solving equations in virtually free groups can be reduced to the problem of solving twisted word equations with regular constraints over free monoids with involution. In this paper, we prove that the set of all solutions of a twisted word equation is an EDT0L language whose specification can be computed in [Formula: see text]. Within the same complexity bound we can decide whether the solution set is empty, finite, or infinite. In the second part of the paper we apply the results for twisted equations to obtain in [Formula: see text] an EDT0L description of the solution set of equations with rational constraints for finitely generated virtually free groups in standard normal forms with respect to a natural set of generators. If the rational constraints are given by a homomorphism into a fixed (or “small enough”) finite monoid, then our algorithms can be implemented in [Formula: see text], that is, in quasi-quadratic nondeterministic space. Our results generalize the work by Lohrey and Sénizergues (ICALP 2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to both complexity and expressive power. Neither paper gave any concrete complexity bound and the results in these papers are stated for subsets of solutions only, whereas our results concern all solutions. </jats:p

    Global Dimension of Polynomial Rings in Partially Commuting Variables

    Full text link
    For any free partially commutative monoid M(E,I)M(E,I), we compute the global dimension of the category of M(E,I)M(E,I)-objects in an Abelian category with exact coproducts. As a corollary, we generalize Hilbert's Syzygy Theorem to polynomial rings in partially commuting variables.Comment: 11 pages, 2 figure

    More Than 1700 Years of Word Equations

    Full text link
    Geometry and Diophantine equations have been ever-present in mathematics. Diophantus of Alexandria was born in the 3rd century (as far as we know), but a systematic mathematical study of word equations began only in the 20th century. So, the title of the present article does not seem to be justified at all. However, a linear Diophantine equation can be viewed as a special case of a system of word equations over a unary alphabet, and, more importantly, a word equation can be viewed as a special case of a Diophantine equation. Hence, the problem WordEquations: "Is a given word equation solvable?" is intimately related to Hilbert's 10th problem on the solvability of Diophantine equations. This became clear to the Russian school of mathematics at the latest in the mid 1960s, after which a systematic study of that relation began. Here, we review some recent developments which led to an amazingly simple decision procedure for WordEquations, and to the description of the set of all solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings of CAI 2015, Stuttgart, Germany, September 1 - 4, 201

    QuickXsort: Efficient Sorting with n log n - 1.399n +o(n) Comparisons on Average

    Full text link
    In this paper we generalize the idea of QuickHeapsort leading to the notion of QuickXsort. Given some external sorting algorithm X, QuickXsort yields an internal sorting algorithm if X satisfies certain natural conditions. With QuickWeakHeapsort and QuickMergesort we present two examples for the QuickXsort-construction. Both are efficient algorithms that incur approximately n log n - 1.26n +o(n) comparisons on the average. A worst case of n log n + O(n) comparisons can be achieved without significantly affecting the average case. Furthermore, we describe an implementation of MergeInsertion for small n. Taking MergeInsertion as a base case for QuickMergesort, we establish a worst-case efficient sorting algorithm calling for n log n - 1.3999n + o(n) comparisons on average. QuickMergesort with constant size base cases shows the best performance on practical inputs: when sorting integers it is slower by only 15% to STL-Introsort

    Conjugacy in Baumslag's group, generic case complexity, and division in power circuits

    Full text link
    The conjugacy problem belongs to algorithmic group theory. It is the following question: given two words x, y over generators of a fixed group G, decide whether x and y are conjugated, i.e., whether there exists some z such that zxz^{-1} = y in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the complexity of the conjugacy problem for two prominent groups: the Baumslag-Solitar group BS(1,2) and the Baumslag(-Gersten) group G(1,2). The conjugacy problem in BS(1,2) is TC^0-complete. To the best of our knowledge BS(1,2) is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group G(1,2) is an HNN-extension of BS(1,2). We show that the conjugacy problem is decidable (which has been known before); but our results go far beyond decidability. In particular, we are able to show that conjugacy in G(1,2) can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs conjugacy in G(1,2) can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in G(1,2) by reducing the division problem in power circuits to the conjugacy problem in G(1,2). The complexity of the division problem in power circuits is an open and interesting problem in integer arithmetic.Comment: Section 5 added: We show that an HNN extension G = < H, b | bab^-1 = {\phi}(a), a \in A > has a non-amenable Schreier graph with respect to the base group H if and only if A \neq H \neq
    • …
    corecore